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Abstract : 

The existing calculations of the form factors describing the decay B --f pev from QCD 
sum rules have yielded conflicting results at small values of the invariant mass squared 
of the lepton pair. We demonstrate that the disagreement originates from the failure of 
the short-distance expansion to describe the p meson distribution amplitude in the region 
where almost the whole momentum is carried by one of the constituents. This limits 
the applicability of QCD sum rules based on the short-distance expansion of a three- 
point correlation function to heavy-to-light transitions and calls for an expansion around 
the light-cone, as realized in the light-cone sum rule approach. We derive and update 
light-cone sum rules for all the semileptonic form factors, using recent results on the p 
meson distribution amplitudes. The results are presented in detail together with a careful 
analysis of the uncertainties, including estimates of higher-twist effects, and compared to 
lattice calculations and recent CLEO measurements. We also derive a set of “improved” 
three-point sum rules, in which some of the problems of the short-distance expansion are 
avoided and whose results agree to good accuracy with those from light-cone sum rules. 
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1 Introduction 

The interest in the study of semileptonic B decays is mainly due to their importance in 

determining the CKM matrix elements II&,/ and IV,,bl. Whereas the theoretical analysis 
of both exclusive and inclusive b + c transitions is decisively simplified by an expansion 
in the inverse heavy quark mass, this method is of only little use in b + u transitions. 
This is essentially due to the fact that in inclusive channels experimental observation 
is possible only in a small region of phase-space beyond the kinematical threshold for 
charm production, in which the hadron multiplicity is small. Thus, since the theoretical 
description of inclusive decays is essentially based on a parton-model picture, it is not 
very predictive in the experimentally accessible range, cf. [l]. It is therefore rather the 
exclusive decay channels, in particular B -+ 7r& and B -+ p!v, that seem to be more 
suitable for obtaining reliable information on IV,,l. The CLEO collaboration has recently 
presented first experimental results of these branching ratios [2], which, however, are model- 
dependent. 

The decay B -+ x.& has been tackled by several authors using a number of different 
approaches, in particular QCD sum rules [3, 4, 5, 6] and simulations on the lattice [7, 8, 9, 
lo]; the results are in reasonable agreement. The situation is, however, not that favourable 
in the B t p channel. Although here the same methods were applied, the resulting 
predictions for the decay rates are quite different. To illustrate the origin of the problem, 
let us first introduce the relevant observables: the hadronic matrix element determining 
the B 

. . 
--+ p weak transition is 

(P, Xl(V - A),#) = -+QI + m,)A,(t)+) + m;:(t)Je*(A)ps)(p~ + p,), 

+ m”,“;‘l k*(%E)(PE - Pp), + my; ep@%;(A)p~pp,, (1.1) 
P P 

where the four form factors A1,2,3 and V depend on the momentum transfer t = (JIB -P,)~ to 
the leptons; in the limit of vanishing lepton mass A3 does not contribute to the semileptonic 
decay rate and will not be considered in this paper. X is the polarization of the p, t 

takes values between 0 and 20.3 GeV2. It is precisely this large range of relevant t that 
renders the theoretical description of the form factors in (1.1) so difficult. Most quark 
model calculations rely essentially on the pole-dominance picture [ll] or on a nonrelativistic 
description, which yields an exponential increase of the form factors with t [12], which was 

softened in an updated version of the model, Ref. [13]. Lattice calculations are up to now 
limited to small momenta of the final state p [7, 8, 141 and/or require extrapolations in the 
heavy quark mass. For B + rev, the possibility to restrict the functional t dependence 
of the single relevant form factor from unitarity with the supplementary input of available 
lattice data at large t was investigated in [lo], but this method is presently not very 
predictive in the p channel, see [15]. 

To date, only lattice simulations and QCD sum rules seem to be apt to predict the 

t dependence in nearly the whole physical region. QCD sum rules provide a consistent 
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Figure 1: “Hard” (a,b) and “soft” (c) contributions to the decay form factor. (d): modelling 

of the soft contribution in the QCD sum rule approach. See explanation in the text. 

description of semileptonic D decays [16] and of the B + 7r semileptonic form factor 
[3, 4, 5, 61. However, there exist conflicting predictions from different types of QCD sum 
rules for B + p decays, which differ by a factor 2 in the form factors at maximum recoil 
[5, 171. The aim of this paper is to clarify the origin of this difference and to give updated 
predictions for the form factors, which include in particular recently gained information on 
the structure of p mesons probed at large momentum transfer [18]. 

At large recoil, the light quark originating from the weak decay carries a large energy 
of order mb/2 and has to transfer it to the soft cloud to recombine to the final state 

hadron. The probability of such a recombination depends on the parton content of both 
the B meson and the light meson, the valence configuration with the minimum number of 
Fock constituents being dominant. The valence quark configuration is characterized by the 
wave function ~(Ic, Icl) d p e en m d’ g on the momentum fraction z carried by the quark and on 
its transverse momentum Icl. There exist two different mechanisms for the valence quark 

contribution to the transition form factor. The first one is the hard rescattering mechanism 
pictured in Figs. l(a,b), h’ h q w ic re uires that the recoiling and spectator quarks are at small 

transverse separations. In this case the large momentum is transferred by an exchange of 
a hard gluon with virtuality Ic2 * O(mb). This contribution is perturbatively calculable in 
terms of the Bethe-Salpeter wave functions at small (- l/mb) transverse separations, or 

distribution amplitudes: 

4(x) = /k’-mb dk;qS(z, /cl). (1.2) 

The second mechanism is the soft contribution, shown schematically in Fig. l(c). The 
idea is that hard gluon exchange is not necessary, provided one picks up an “end-point” 
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configuration with almost all momentum 1 - z - O(l/mb) carried by one constituent. 
Since at large scales 4(z) - 1 - 2 [19], th e overlap integral is of order JiiO~l,mb) dz qS(z) - 

0( l/m:). An additional factor rn:” comes from the normalization of the heavy initial state, 
so that the final scaling law for the soft contribution to the form factor at large recoil is 

1 /-n;12 [20, 17, 211. Note that the transverse quark-antiquark separation is not constrained 
in this case, which implies that the soft contribution is sensitive to long-distance dynamics. 
To calculate the soft contribution one needs to know the wave function as a function of 
the transverse separation; the simpler distribution amplitude is not enough. 

Hard exclusive processes involving light hadrons receive the same two types of contribu- 
tions. There is a major difference, however, in that for light hadrons the soft contribution 
is suppressed by a power of the large momentum (i.e. it is of higher-twist), while for heavy 
meson decays both soft and hard contributions turn out to be of the same power in the 
heavy quark mass [20, 17, 211. A s a result, the soft (end-point) contribution is expected 
to be large and requires quantitative evaluation. 

It was suggested [21] that Sudakov-type perturbative corrections cut off contributions 
of large transverse separations so that the soft contributions might be suppressed. This 
suppression eventually eliminates the soft contribution for very large mb. At the realistic 
values mb z 5 GeV, however, it is unlikely that calculations of this type can provide a 
quantitative description. Indeed, the existing estimates of “hard” contributions typically 
fall short of realistic values of the form factors from model calculations.’ 

Here the QCD sum rules method enters the stage and suggests a nonperturbative 
technique to estimate the necessary convolution integral without explicit knowledge of the 
wave functions. 

There exist two different types of QCD sum rules, which, being similar in spirit, differ 
in the treatment of the light hadron in the final state. This is illustrated in Figs. l(c,d). 

The “traditional” sum rules avoid introducing wave functions altogether by considering 
a three-point correlation function with a suitable interpolating current and use dispersion 
relations to extract the contribution of the ground state. The most important nonpertur- 
bative effect is then described by the diagram in Fig. l(d), w h ere the light quark is soft and 
interacts with the nonperturbative QCD vacuum, forming the so-called quark condensate. 
Since quarks in a condensate have zero momentum, it is clear that this diagram yields 

a contribution to the distribution amplitude that is naively proportional to 6(1 - XC> and 
remains unsuppressed for mb + co. This obviously violates the power counting discussed 
above. The contradiction must be resolved by including the contributions of higher-order 
condensates to the sum rules and subtracting the contribution of excited states. The sup- 
pression of the end-point region z -+ 1, which is strictly required by &CD, is thus expected 
to hold as a numetical cancellation between different contributions, which becomes the 
more delicate (and requires more fine-tuning) the more mb increases. For mb E 5 GeV 
a suppression of the quark condensate contribution by a factor - 1 GeV2/m,2 - l/25 is 

‘Note that a similar suppression is present for hard exclusive processes involving light hadrons [z] (in 

which case the soft contribution is additionally suppressed by a power of the large momentum); however, 

there is increasing evidence that soft contributions to: say. the pion form factor remain important at least 
up to Q2 x 10GeV2. see [‘73]. 
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required. This explains why the traditional three-point sum rules become unreliable. 
The light-cone sum rules avoid this problem by rearranging the calculation in such a way 

that nonperturbative effects like the interaction with the quark condensate are included 
in the nonpertzlrbative hadron distribution amplitudes, estimated using additional sum 
rules [24]. Th ese additional sum rules are written for integrated characteristics of the 
distribution amplitudes like moments, and the correct asymptotic behaviour at the end- 
points is included by construction. 

The contribution of a single leading-twist distribution amplitude incorporates an infinite 
set of contributions of condensates of increasing dimension in the standard approach, at 
the cost of retaining pieces with the largest Lorentz spin (lowest twist) only. The remaining 
pieces of condensate contributions are organized in a similar way in the contributions of 
higher-twist distribution amplitudes.’ 

The premium for this rearrangement is that light-cone sum rules have the correct asymp- 
totic behaviour in the heavy quark limit, but the snag is that the present knowledge of 
higher-twist distribution amplitudes is incomplete, so that not all known nonperturbative 
corrections of the standard approach can be included. One should expect that these two 
approaches provide complimentary descriptions of B decays, with their own advantages 
and disadvantages. 

Note that the problem with three-point sum rules originates from the constraint of the 
distribution amplitude convolution integral to the end-point region; this makes the answer 
very sensitive to the precise shape of the distribution amplitude rather than its integrated 
characteristics. For the decay form factors at small recoil there is no such restriction, and 

the classical QCD sum rule concept of taking into account nonperturbative effects as the 
contributions of long-wave vacuum fluctuations (condensates) classified by their dimension 
is adequate. Thus, at small recoil, both types of the sum rules should yield similar results 
and the spread of their predictions characterizes the accuracy of the method. At large 
recoil one should rely on the light-cone sum rules. 

It is worthwhile to add that contributions of hard rescattering can be consistently 
included as radiative corrections to the sum rules. Their inclusion is technically challenging, 
but does not pose a problem of principle. 

Our paper is organized as follows. In Sec. 2 we introduce the two different types 
of QCD sum rules. In Sec. 3 we then analyse and explain the discrepancy in B + p 

transitions, paying special attention to the rearrangement of quark and mixed condensate 
contributions within the light-cone expansion. We also estimate higher-twist contributions 
to Al. In Sec. 4 we discuss shortly the quark mass dependence and the heavy quark 
limit. Section 5 contains our final predictions for form factors, spectra and decay rates of 
B + pev, Sec. 6 a summary and the discussion of the results. More technical issues are 
delegated to appendices. 

2While the usual sum rules are based on matching the QCD calculation at small distances to the 

phenomenological description in terms of hadrons at large distances, the light-cone sum rules match in 
transverse distance. Hence the relevant parameter in the expansion is twist. and not dimension. 
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2 Three-Point vs. Light-Cone Sum Rules 

In this section we discuss the two different types of QCD sum rules that have been used 
in the literature to calculate heavy-to-light meson decays. 

2.1 Three-Point Sum Rules 

The - comparatively speaking - “traditional” approach towards transition matrix elements 

is by calculating a three-point (“3pt” in the following) correlation function. Specifically, 
for B + p one considers3 

Iv’” = p 

J 
d4z d4y e --ips=+ip~y (OITj;(y)(V - A)P(0)j~(z)~O) 

= ig pVrO - i(PB + p,)Ppl;,r+ - E’lv,pgp;rv + . . . (2.1) 

Here (V-A), = Uy,,( 1 -~s)b is the weak current mediating the b -+ u transition, j, = @ysb 
is the interpolating field for the pseudoscalar B meson, and j,” = qy”zl the interpolating 
field for the p meson. In (2.1) we have given explicitly only those Lorentz structures that 

are relevant for the semileptonic decay channel, the others are suppressed. 
The method of QCD sum rules consists - in principle - in performing on the one hand 

a QCD calculation of Y in the not so deep Euclidean region pz w p: - rni N 0(1 GeV2), 
writing it on the other hand as (double) dispersion relation over the physical cut and 
equating both expressions. It was the idea of Shifman, Vainshtein and Zakharov [25] to 

complement the purely perturbative calculation of Y by nonperturbative terms in form of 
vacuum matrix elements of gauge-invariant local operators, the condensates. The method 

proved surprisingly successful in describing various hadronic matrix elements in terms of a 
handful of input parameters, as is testified by the immense number of publications in the 
field. 

The traditional approach by SVZ appeals to Wilson’s operator product expansion 
(OPE), which is the expansion of a T-product of currents at short distances in terms 
of local operators. In that way one obtains for the invariants l? in (2.1): 

r(~L~;dt) = ~r%~,P;,t)(o 1 a t 0) 
n 

(2.2) 

with the condensates (0 j 0, IO). I n most applications one takes into account condensates 

up to dimension 6. I? can also be expressed as a dispersion relation over the physical 
singularities: 

r = 
J 

lghYS(% SPY q 
C& ds, (sB _ pi)(sp _ pi) + subtractions. (2.3) 

Usually one is interested only in the properties of the ground state, which has to be 

extracted from the sum over all states. For this, one writes 

P 
phys = pground state + pcont 

(2.4) 

3For zpt functions we follow the notations of [.5]. 
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and approximates the unknown contribution of the continuum by the perturbative spectral 

function above some “continuum-thresholds” sf and sg, such that 

P cont 2 pPert{l - O(si - sg) @(SF - sp)}, (2.5) 

where the “9 indicates that smearing over a sufficiently large interval is implied. The 
sum rule is then obtained by equating (2.2) and (2.3) and subtracting from both sides the 
continuum contribution, i.e. in the above approximation the integral over the perturbative 

double spectral function above thresholds. In order to reduce the impact of this approxi- 
mation on the final results as well as the error induced by truncating the series (2.2) after 
the first few terms, one subjects the sum rule to a Bore1 transformation. For an arbitrary 
function of Euclidean momentum, f( P”) with P2 = -p2, the transformation is defined by: 

f := Bp2(M2) f = lim $(-P2)N+1 (d;;;:t’ f, (2.6) 
P2 -+ca,N+cc . 

P2/N=M2 fixed 

where M2 is the so-called Bore1 parameter. For a typical term in the OPE, the transfor- 
mation yields 

BP2(M2) cp2 -lrn2,. = (n y l)! (-1)” &epm2iM2. (2.7) 

As condensates with large dimension get divided by correspondingly high powers of (p” - 

m2), their contributions to the sum rules get suppressed by factorials. In the dispersion 
integrals, pCont gets exponentially suppressed relatively to the ground state contribution, 
which is just the desired effect. 

Defining the couplings of the mesons to their interpolating fields by 

(O~di~,bIBO) =ff$, ( 0 I d;uyU 1 p+, X ) = fpmpep), P-8) 

we find the following sum rules for the form factors determining the semileptonic B + p 
transition: 

Af’P(t) = 
mb 

fB fPh3 + mP >m;mp 

mb(mB + mp> 
A?(t) = fE fpmimp 

v”+p(i) = 

mb(mB + mp> 

2 fB fpmimp 

(2.9) 

(2.10) 

(2.11) 

where the P on the right-hand sides denote the Borel-transformed invariants after contin- 
uum subtraction. The explicit formulas for l! can be found in [16, 51. 
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2.2 Light-Cone Sum Rules 

An alternative approach [26, 27, 201 starts from the two-point function sandwiched between 
the vacuum and the p meson state: 

n, = i 
J 

d4a: e-‘pBx 
MPPT uw - 4PK9~kaO~ 

= -iWPL t)p + inIz(P;, q(E*(X)PB)(PB + pp), + n,(pi, t)E,ya~E:(X)pBappp $(2.12) 

with pi - rnz < 0 and pz = mp 2. Hence we encounter only single dispersion relations, 

II= dse 
J 

pphys(s13, q 

SB -pi 
+ subtractions, (2.13) 

and to isolate the ground state only an approximation for the continuum contribution in 
the B meson channel is needed: 

P 
cant 

21 pPert{l - o<s; - SB)}. (2.14) 

Thus, this part becomes simpler and potentially more accurate than with 3pt sum rules, 
since less assumptions are made. 

The price to pay, however, is that the QCD calculation becomes more involved. In 

particular, the expansion of (2.13) in local operators becomes useless since an infinite 
sequence of such operators contributes to the same order in l/(pg - mi). Indeed, each 
operator of the sequence 

m, . . . ah 

where D,,; is the covariant derivative and I’ an arbitrary Dirac matrix structure, sym- 

metrized over the indices pl, . . . , CL, and with subtracted traces, enters with the same sup- 
pression factor l/(p$ - mi) [28]. Th’ IS is different from 3pt sum rules where contributions 
with higher n are supressed by powers of l/p;, which here is no longer an expansion param- 
eter. Still, contributions of operators containing truces over Lorentz indices, or transverse 
components of the gluon fields are suppressed by extra powers of l/(pi - mt). This means 
that the relevant parameter is the operator twist rather than dimension. The expansion 
goes in terms of nonlocal string-like operators on the light-cone (“LC” in the following), 
whose vacuum-to-meson transition amplitudes define the meson LC distribution ampli- 
tudes, which describe the momentum fraction distribution among the meson constituents. 
The leading-twist distributions correspond to the minimum number of Fock constituents 
and in the case of a charged p meson involve the following functions [17, 181: 

(P+(P, ~)l~(O)~,d(~)~O) = -if,‘(p)(eE(‘)p, - e$‘) PJ Jd’ du eiupV& p), (2.15) 

*(ax) 
(P+(P, w@)Y,+c)lo) = P”(e(pz) fpmp 1’ du eiupsd,lb> 4 
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eL(‘) - p,(e*‘A)s) fpmp 
(px) ) J ’ du eiuprgp)(u, p) , (2.16) 

0 

(p’(p, X)jii(0)ypT5d(x)10) = &vwe*(i)upPzuj~mp J’ du eauprgf)(u, ,u) . 
0 

For the sum rules for the B 4 p form factors, we also need the function 

@,,(u, ,u) = ; ii J,“v ‘$‘p) - uJ1dv Bali”)] . 

u 

(2.17) 

(2.18) 

In the above definitions the matrix elements are not gauge-invariant, but refer to the axial 
gauge x~A~(x) = 0. I n a general gauge, gauge factors 

[ J 1 Pexp ig 
0 

da xCIIA,( ax) 1 (2.19) 

have to be inserted in between the quark fields. The integration variable u corresponds to 
the momentum fraction carried by the quark. The normalization is such that 

J 
o1 du f(u) = 1 

for all four distributions f = c$l,~ll,g~',g~'. f,'(p), th e scale-dependent coupling of the 

p meson to the tensor current, is defined by (2.15) f or x = 0. To leading-twist 2 accuracy 

the “g-functions” are in fact not independent, but related to $11 by Wandzura-Wilczek [29] 

type relations: 

91 
(u),twist2(u, p) = f by dv h(g) p) + J’ dv hl(I, p)] , 

u 

&)ytwist 2 (u,p> = 2 ?LJ”dv~ll(v~~) +u/l&h~(v~~) . 
0 v u V 1 (2.20) 

All these functions are discussed in detail in [18]. The distribution amplitudes of higher- 
twist can be related to contributions of Fock-states with more constituents (say, an extra 
gluon) and generally generate contributions to the sum rules that are suppressed by powers 
of l/(pi - mt). We will discuss higher-twist distribution amplitudes only shortly in Sec. 3. 

Note that the matrix element of a single nonlocal operator contains information about a 
whole series of matrix elements of local operators of increasing dimension (but fixed twist), 
which are encoded in moments of the distribution amplitudes. For example: 

(p’(p) x)lii(O)a,,(D . x)“d(O)lO) = -i(eF)pv - eF)p,)fi(ipx)n J’ duunqSl(u, ,u). 
0 

(2.21) 

A renormalization group analysis [19] h s ows that for large n, moments of the above defined 

distribution amplitudes 41,ir behave as4 

J 0 
’ duu”qS(u, p) - const/n2, (2.22) 

4Note that a purely perturbative analysis is sufficient to obtain the leading behaviour in n, whereas the 
coefficient of proportionality can only be obtained by using nonperturbative methods, see [24]. 
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which corresponds to the following end-point behavior of the amplitude for u t 1: 

$(u, p) - const . (1 - u). (2.23) 

We would like to stress that it is in this place - using the information about large n 
behaviour of local operator contributions, related to the end-point behaviour of the LC 
distributions - that the LC sum rules go beyond the traditional SVZ approach. We will 

discuss this point in detail in the next section. 
The rest of the LC sum rule procedure follows the standard rules sketched in the last 

subsection: to suppress contributions of higher-twist p meson distributions and to enhance 

the sensitivity to the ground B meson state, one performs a Bore1 transformation in pi, 
and the final expressions for the sum rules for B + p decay form factors are similar to the 
3pt sum rules in (2.11) apart f rom the different expressions on the right-hand side. One 
thus obtains (to leading-twist accuracy): 

@[d”, $?)I f~(~)$~(~, p) & (mi - t + u2$ + fpmbmpg~‘(U, p)}, (2.24) 

A;‘P(t) = 

; f;(/‘)d&, /+[+, $)j + fpmbm,a~l(u, PL) & @k% &I + @b-h .&I I) , (2.25) 
B 

v”-(t) = 
mb(mB + mp) 

2fBmi 

exp{mQi’}dl$ exp{$(t-rni-urn:)} 

f~b)h(% d”k(‘% &I + f fpmbmp&)(% cl) & o[C(% $)I + @(% $)I I) .(2.26) 
B 

with c(u, 3:) = us: - rni + hi - uiimg. 

LC sum rules for Al and V were already obtained in [17]; they slightly differ from the 
ones given above by the “surface” terms 6[c(u, sg)], which are related to subtleties in the 
continuum subtraction as discussed in App. B. The LC sum rule for A2 is new. 

2.3 The Conflict 

The two approaches described above are rather different and their comparison should shed 
light on the actual accuracy of the sum rule method. The numerical comparison requires the 
use of a “coherent” set of parameters, so that differences are not introduced (or masked) 

by using different inputs. We shall specify our set in detail below; for the purpose of 
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Figure 2: Semileptonic form factors of the decays D + p and B t p from LC sum rules, 

Eqs. (2.24)-(2.26), and 3pt sum rules, Eqs. (2.9)-(2.11), evaluated with the same input 
parameters. The dotted curves illustrate the effect of introducing a different interpolating 
current for the p meson in the 3pt correlation function, see Sec. 3.3. 
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illustration the particular values are unimportant. The results for all B and D meson 

decay form factors from both 3pt and LC sum rules are shown in Fig. 2. We see that the 
results are in reasonable agreement at large t while there is a disturbing discrepancy up to 

a factor two at large recoil [5, 171. The i d ependence also turns out to be very different 

15, 171. 
Provided no particular advantage or flaw of one method can be found, this spread 

of values would necessarily have to be considered as indicating poor theoretical accuracy 
of the predictions in this region. The further discussion will clarify the reason for this 
discrepancy and give strong evidence in favour of the LC sum rule calculation. Reasons 
for the better agreement at small recoil (large t) will also become clear. 

3 Anatomy of the Discrepancy 

An inspection shows that the disagreement between LC and 3pt sum rules is mainly due 
to the contribution of the quark condensate, which dominates the 3pt sum rules at small 
t, cf. [5, 301. To clarify th e reason, we give in this section a detailed calculation of this 
contribution, and also of the contribution of the mixed condensate to the 3pt sum rule for 
the axial form factor Al. The result is well known [16, 51 and the new point we wish to make 

here is to rederive it using the sequence of steps adopted by the LC sum rule approach. 
This will reveal how the p meson distribution amplitudes are implicitly described in the 
3pt approach and also give examples of higher-twist contributions. 

3.1 Three-Point Sum Rule from the Light-Cone Point of View 

We start from the correlation function (2.1) and as first step substitute the heavy quark 
propagator by its leading-order perturbative expression: 

rP” = i2 
I 

da2 ddy e-iPe~+VY 

I 

d4k ikz 1 

me rni- k2 

x (o~T{~~(~)~(Oh’?l - %)(mb+ l)iy5d(z)}10). 

The product of y-matrices in (3.1) contains several terms, corresponding to different in- 
variant structures in (2.1) and to contributions of dimension odd (even) operators to the 
OPE. We choose to consider the axial form factor Al, and contributions of operators of 
odd dimension only. To this end we need to calculate the correlation functions 

T VPQ - -a 
I 

d4y eipy iOlT{~,“(y)~(O)~“d(~))/Dj, 

T” = i 1 d4y eiw (OlT{~~(y)~(O)d(~,}l0), 

(3.2) 

(3.3) 

using the OPE ( we recall that p2 is assumed to be Euclidian and sufficiently large). 
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Throughout the calculation we imply using Fock-Schwinger gauge. In a general (co- 

variant) gauge the heavy quark propagator in external gluon fields contains the link factor 
(2.19), which has to b e inserted in the nonlocal operators in (3.2) and (3.3) to make them 

gauge-invariant, see Sec. 2.2. In the Fock-Schwinger gauge, further terms in the expansion 
af the b quark propagator in background gluon fields only yield corrections - l/mb to the 
sum rules and for simplicity will not be considered here. They can easily be added. 

The OPE of the correlation functions (3.2) and (3.3) is straightforward and yields:5 

T vpQ = i(qq) (pQgpv - fg”“) (1 + caps 

1 
)[+ + S$ + irn$z2+] - ipz(1 - eipZ)k$} 

+ i(qq)~(Pg’” 
i - zpg”“)(ipz)(l - eipZ)kF 

1 P” 
+ ;(4d~~~P=~p - p”Za)(ipz)(l - eipZ)i2 , (3.4) 

T” = i(qq) (p”(pz) - zyp2) (1 + eipZ)t$ - (fjq) $(l - eipZ)(l + &mix’). (3.5) 

Here rni = (qgoGq)/(qq). Note that pvT”pa = 0, while T” contains a contact term. 

Substituting (3.4) and (3.5) into (3.1), taking the remaining integrals and performing 
Bore1 transformations in pi and p2, respectively, we reproduce the contributions of quark 
and mixed condensate to the 3pt sum rule for AI in Ref. [5], except for the neglected 
contribution of the diagram with the gluon emitted from the b quark line: 

Af’P(t) = 
fBfp(mB y",p)mimp exp 

- (44) ij(m: - t) 

rnt(rnt - t) rni - t 3m,2 - 5t rni - t)” -~- 8M4 
6M; 24M; 

+( 
6M;M; II . (3.6) 

B 

We emphasize that the derivation sketched above is entirely within the traditional QCD 
sum rule approach, although the sequence of steps may seem unusual. 

We now rewrite this answer in terms of contributions of p meson distribution ampli- 

tudes. To this end, we separate the p meson contribution to TVpa(p), 

T”YP) = w;lP+(P> 4)m2 1 p _ p2 (P’(P? w4~>~p~4~)10) + . . . , (3.7) 

and, similarly, the one to T”. The first matrix element is proportional to the decay constant 
f,, while the second one, by definition, gives p meson distribution amplitudes in the fraction 

‘The perturbati e \- contribution to (3.2) and (3.3) is of order m,d and IGll be neglected here. 
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of momentum carried by the quark. An inspection of (3.4) and (3.5) suggests to introduce 
the following distributions: 

(P’(P, A) lq+,,d( 2) IO) = -if,‘( eyp, - ep p,,) J,’ du eiupx Mu) + ~“P’(U)] 

+ fp’( e;%, - e;%J 
I 0 

’ du etUpz$(2)( u) 

+ if;(e*(‘) . z)(+p, - zc,pp) 
I 

’ du eiUpz~(3)(u), 
0 

(3.8) 

(p+(p, X)lti(O)d(z)jO) = -if,i(e*(x) . cc) J’ du e’Up’+(4)(u). 
0 

(3.9) 

After a Bore1 transformation of (3.4) and (3.7) in p2 we get the explicit expressions 

M4 = m f fi ,!;a ,-‘/ll:i ( 
1 - ij$ 

14) 
P(u) + q1 - u)] - ;g$qu) - S(1 - U),}, 

P u 
(3.10) 

pyu) = -(@I) 
mPfPfpi 

em”Mz; mi[b(u) + S(1 - u)], 

p(u) = -@q) 

mPfPfpl 
e”~/“:~m~[6(u) - 6(1 -u)], 

(3.11) 

(3.12) 

Jd3)(u) = 0 (3.13) 

where itI,” z;l-2)GeV 2 is the Bore1 parameter. Note that the expansion goes in deriva- 
tives of the S-function. 

Similarly, from the expansion (3.5) we deduce 

+ 50 - u>l- (3.14) 

Substituting (3.8) and (3.9) in (3.7) and (3.1), taking the integrals and performing a 
Bore1 transformation in pi, we get a typical LC sum rule: 

A;‘“(t) = fBcm~~~p~m; exP{m~~~‘}~l~eXP{~~t-m:-um:)i 

X & (74 - t + u’mz) 
i [ 

h(u) - & 1 + $ +(l)(u) + &T+~‘(.)] 
B ( ) B 
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where we have changed variables u + 1 - u to be consistent with (2.24). To save space 
we have not shown the continuum subtraction. Note that the leading-twist contribution 

of the distribution amplitude $I coincides with the corresponding contribution in (2.24); 

the extra terms $J(;) are higher-twist corrections, not taken into account in (2.24).6 

On the other hand, further substituting in (3.15) th e above expressions for the distri- 

bution amplitudes and suppressing terms - rnz 

back to (3.6). The q 

unless they get divided by A$, we come 

uark condensate contribution in (3.6) appears as a contribution of 
the leading-twist distribution 4 I, while the mixed condensate terms contain contributions 
from both leading- and higher-twist. In particular, for the expression in square brackets in 
(3.6) we find the following decomposition: 

(rnt - t)2 

6Mi Mp” 

+ [i + SE& [:I*:,, ) (3.16) 

where [. . .]bI indicates that this term originates from the distribution 41, etc. As it stands, 
this expression does not yet agree with (3.6), th e reason being that the Bore1 transformation 
in the p meson channel was applied in a slightly different way. It is possible to show that 
in order to reproduce the 3pt sum rule one has to substitute rn; + -Mi, after which the 
expressions indeed coincide literally7. 

3.2 Short Distance Expansion and Light-Cone Distribution Am- 
plit udes 

The new input made by the LC sum rules is to argue that the S-function type shape of 
LC distributions, concentrated at u = 0 and u = 1, is qditativeZy wrong. In particular, 
instead of the expression in (3.10), ‘t 1 is suggested to use the distribution amplitude 

qL(u, p) = 6u(l - u) [l + 1&(&~(2u - l)] . (3.17) 

Here C,“‘“(z) = ( 15z2 - 3)/2 is the second order Gegenbauer polynomial; the coefficient ai 
was estimated to be 0.2 f 0.1 [18]. Eq. (3.17) is clearly very different from (3.10). Where 
does it come from and what is wrong with (3.10)? 

The distributions (3.10)-(3.14) are just the QCD sum rules for the correlation functions 
(3.2) and (3.3). Th eir deficiency becomes apparent when they are rewritten in terms of 

‘The contribution - g1 in (2.24) lvould correspond to terms in (3.1) ivith an odd number of +y-matrices. 
lvhich we have not considered here. 

7There is a subtlety in treating the terms proportional to pa/p4 in the first line in (3.4): p, gets 
contracted with pi and yields a factor pi + p2 - t. Using the dispersion relation first in the p meson 
channel like in (3.7) then implies that p2 is substituted by m;. while in the standard procedure it gives 

-Mz. Ambiguities of this type are intrinsic for the sum rule method. 
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Figure 3: Al from the LC sum rule (2.24) (solid 1’ me LC), the 3pt sum rule (2.9) (solid line 
3pt), and a “hybrid LC” sum rule, in which the leading-twist distribution amplitude qSI is 
replaced by the naive expansion in b-functions, (3.10). 

moments. For the leading-twist distribution we find (cf. [18]): 

J 
o1 du(2u - l)“~$~(u) = ;;$ ern:jM: (1 + (-1)“) (1 - & (2n + 1)) . (3.18) 

p P P 

Note that the contribution of the mixed condensate is enhanced by a factor n. This 
enhancement is of generic nature: contributions of higher dimension to the OPE will be 

acompanied by increasing powers of n so that the sum rule blows up for large moments 
and cannot be used. This signals the break-down of local OPE for higher moments of 
distribution amplitudes. Extensive studies [24] have demonstrated that QCD sum rules of 
type (3.10)-(3.14) can be applied to estimate the two first moments only, n = 0 and n = 2, 
i.e. the normalization and width of the distribution amplitudes, but fail to describe higher 

moments, i.e. the shape of the distribution close to the end-points. Information on the 
shape can, however, be obtained from another source, namely the behaviour of distribution 
amplitudes under the renormalization group [19]. Th e major result is that $1 approaches 
6u(l - u) at large virtualities and that the corrections can be systematically expanded in 
Gegenbauer polynomials Czi2(2u - 1). C ombining this expansion with estimates of the 

first two moments by QCD sum rules one obtains the expression (3.17). 
In fact, the particular sum rule in (3.18) is not accurate enough even for n = 0,2, and 

in practice one uses different sum rules, see Ref. [18] for a detailed discussion. 
To illustrate that the shape of the leading-twist distribution is indeed of crucial impor- 

tance, we have plotted in Fig. 3 the form factor A:+‘(t), calculated in several different 
ways. The solid curve, labelled LC, shows the LC sum rule (2.24) with realistic distribu- 
tion amplitudes. The dotted line is obtained using the same sum rule (2.24), but with the 
distribution amplitude $I replaced by the expression (3.10); it is very close to the solid 
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line showing the 3pt sum rule result. The “dominance” of the quark condensate [30] in the 
3pt sum rule thus happens to be an artifact of the short-distance expansion extrapolated 
beyond the region of its validity. 

The ideal agreement of the dotted curve in Fig. 3 with the 3pt sum rule result at t = 0 is 

in fact coincidental and is due to a mutual cancellation of two effects. First, in addition to 
contributions of operators of odd dimension, the 3pt sum rule contains a perturbative term, 
a contribution of four-quark operators of dimension 6, and of the gluon condensate. These 
contributions correspond to the terms with an odd number of r-matrices in (3.1), which we 
have not considered, and have their counterpart in the LC sum rule in the contribution of 
the distribution g1 (up to higher-twist terms). The difference between the two approaches 
is small in this case, the reason being that repeating the above procedure one would deal 
with the correlation function of j,” with a nonlocal vector current. In contrast to (3.2), 
(3.3) it has a large perturbative contribution and the OPE goes in condensates of even 
dimension. Extracting the distribution amplitude as outlined above would yield a smooth 
distribution - u( 1 -u), slightly corrected by b-function type contributions of the gluon and 
four-quark condensates. These latter contributions are small, so that g1 as implicitly used 
in the 3pt sum rules is not very different from its “true” behaviour. Hence, the numerical 
results are close. 

Second, the present version of the LC sum rule neglects contributions of higher-twist. 
To estimate their effect one can apply the methods of Ref. [31] to determine the shape of 
the distributions $(k)(~) at 1 ar g e scales, i.e. their asymptotic form, and use the sum rules 
(3.13) to estimate the normalization. We get 

$A”(U) = /cl .3Ou2(1 - u)2, 

7)“‘(U) = K2 .3Ou(l - u)(l - 2u), 

T)(~)(U) = rc4 . 6u( 1 - u) 

with 
rcl = mills, tc2 = mi/6, ~4 = -mi/6. 

In Fig. 4 we plot AydP from Eq. (3.15) using these distributions and including continuum 

subtraction. For comparison we also show the leading-twist LC sum rule (2.24). The 
correction turns out to be negative and lowers the leading-twist result by about 15% for t < 
15 GeV2. These results are, however, only indicative on the size of higher-twist corrections, 
the detailed study of which goes beyond the tasks of this paper. 

If the “naive” description of distribution amplitudes by the usual sum rule method is 
that deficient, the question arises if this approach still works for form factors of D mesons, 
as used e.g. in [16]. Th e f ormal answer is clear from the structure of LC sum rules: the 

distribution amplitudes are integrated with a smooth weight function over a constrained 
region of the momentum fraction u. If the mass of the heavy meson is not very large 

compared to the typical hadronic scale 1 GeV, then the integration region is large and only 

gross characteristics of the distribution amplitudes matter, i.e. their normalization and 
width. These are given correctly by the sum rules, and the approach works well. If, on the 
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Figure 4: Al from the LC sum rules (2.24) and (3.15), with the distribution amplitudes 

(3.19), (3.20). 

other hand, the mass of the heavy meson is much larger than 1 GeV, as it is the case with B 
mesons, and if the momentum transfer to the leptons is small, then the integration region 
shrinks to the narrow interval 1 - u m O(l/mb), th e p recise behaviour of the distribution 
amplitude at u --) 1 becomes important, and the standard approach fails. 

The physical parameter that matters is, however, not the heavy meson mass, but the p 
meson energy Ep in the decaying B(D) rest frame: E, = (mi,D + rnz - t)/(2mB,D). Zero 
recoil corresponds to Ep = m,; in the physical regime t > 0, E, runs up to 2.7 GeV and 
1.1 GeV in B and D decays, respectively. In Fig. 5 we show the form factors AI for 
both B and D mesons. The behaviour is very similar, and in both channels 3pt and LC 
sum rules agree very well for E, z 1.4GeV. For D mesons, this is outside the physical 
region for the decay. 

3.3 Possible Remedy: the Tensor-Current? 

To conclude this section, we would like to demonstrate that the “dominance” of the quark 
condensate is no intrinsic feature of 3pt sum rules. -To this end we recall that one has 
some freedom in the choice of the interpolating field for the considered particles: although 
for the p meson the vector current is the most convenient one, it is by no means the only 
one. In particular one can choose the tensor current j,“” = &‘“u instead and calculate the 
B + p form f ac ors from the correlation function t 

c PVU = i2 
J d4xd4ye --ipes+ippy (OITj;(y)(V - A)p(0)j~(x)lO). (3.21) 

In App. B we give the corresponding OPE including terms up to dimension six. Due to 

the particular y-matrix structure, the contribution of the quark condensate to AZ and V 
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Figure 5: Al as function of the p meson energy E, from LC and 3pt sum rules for both 
D + p and B + p transitions. For D t p transitions, the physical region t > 0 
corresponds to p meson energy up to 1 .l GeV. 

vanishes and is small for Al. We have displayed the corresponding form factors already in 
Fig. 2. They d’ff d’ t’ 1 er is mctively from the results of the original 3pt sum rules and are much 
closer numerically to the LC sum rules. Nevertheless it would be inappropriate to conclude 
that the above correlation function is “better” than (2.1): it suffers from exactly the same 
problem as the original correlation function to describe correctly the shape of the p meson 

distribution amplitudes near the end-points in u. It is only that this failure is less “visible” 
for the given values of the b quark mass and the considered range in t. The problem is 
now shifted to the contribution of the mixed condensate, which starts to domininate A,(O) 
at large mb and eventually overgrows all other terms. Numerically, however, the effect is 
much less significant at mb - 5 GeV. This improvement comes at the price that the tensor 
current couples also to positive parity 1 +- states which contaminate the contribution of 
the p meson, so that the accuracy of these sum rules is not very high. Another possibility 
to achieve a similarly “favourable” rearrangement of power corrections would be to use the 
axial-vector instead of the pseudo-scalar current for the B meson. 

4 The Heavy Quark Limit 

The behavior of form factors in the limit mb -+ 00 is of considerable theoretical and 
practical interest. Taking the heavy quark limit in the sum rules is straightforward, by 
resealing the sum rule parameters in the following way (see e.g. [32]): 

Id2 + 2mbT, 
B 

So + mi •t 2mbw0, (4.1) 

where 7 and wg are of order 1 GeV. 
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One should distinguish between different regions of momentum transfer. First, consider 

rni--tk O(mb), i.e. small recoil, energy of the outgoing p meson of order 1 GeV. Then 
both the 3pt and the LC sum rules fulfil the scaling laws predicted by heavy quark effective 

theory [33]: 

A,(t z t ,,,) - l/Jmb, A,(t = t,,,) ‘v Jmb, v(t z &a,> - 6. (4.2) 

In this regime, the integration over the quark momentumfraction in LC sum rules comprises 
the region 1 - u - O(l), so that only width and normalization of the distributions are 

important. Hence 3pt and LC sum rules are expected and indeed give comparable results, 
see Figs. 2,3. 

More interesting, however, is the behaviour near maximum recoil, t z 0. Here we find 
that in the 3pt sum rules approach the limit mb + 00 cannot be taken since higher order 
terms in the OPE are accompanied by increasing powers of mb. From the “light-cone point 
of view” this inconsistency arises because at large recoil the soft contributions to the form 
factors pick up a tiny region of momentum fraction 1 - u - o( I/mb) and thus the details 
of the shape of the p meson distribution amplitudes, wrongly described by 3pt sum rules, 
enter decisively. 

On the contrary, LC sum rules at t = 0 have a well-defined heavy quark limit [17] and 

scale as l/mz’2. Explicitly, making the change of variables w = (1 - u)mb/2, one finds 

(with p = fBJmb and li = mg - mb): 

jA1(0) = - $ e”, Jyo 

mb 
0 

iA, = -4 e”‘/wo dw e-w’T [f,lwd;(l) + f,mpQ;l(l)] , 
mb 

0 

From the relations (2.18) and (2.20) it follows that to our accuracy 

A,(O) E A2(0) E V(0) (4.4) 

in the heavy quark limit. This agrees with the findings of Ref. [34]. It is instructive to 
check that the above scaling relations are not spoiled by higher-twist corrections. The twist 
4 part of (3.15) b ecomes in the heavy quark limit: 

) (4.5) 

where +‘(u) = (d/du)$(u) and we used that all +-f unctions vanish at u = 1. It is seen 

that higher-twist corrections are in fact down by an extra power of mb, cf. the discussion 

of the pion form factor in the third of Refs. [23]. 
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We recall that the heavy quark mass dependence of form factors at zero recoil is of 

vivid interest for lattice calculations. Due to restrictions on computer power and perfor- 
mance, reliably simulable quark masses are of order - 2 GeV and the results have to be 

extrapolated to the physical beauty quark mass. In this respect, we would like to add 

a word of caution about using the asymptotic scaling law l/m312 since this limit is only 
approached very slowly [17]. To get a ball-park estimate of the next-to-leading order cor- 
rections we calculated the form factors using LC sum rules varying the b quark mass in 
the limits (l-10) GeV and using the scaling (4.2) of the sum rule parameters. We then fit 
by a quadratic polynomial in the inverse meson mass mg = mb + A, A = 500 MeV [32]. 
The results are (we show the leading l/mB corrections only): 

2.4 GeV 

mB 

2.1 GeV 

mb 

1.5 GeV 

mb 

The constants in front of the brackets are almost equal, as expected from (4.4). Note the 
large terms in l/mB. 

Finally, one can consider the region of very small recoil rn: - t - 0( 1 GeV). This 
region is generally difficult for QCD sum rule treatment since one gets more sensitive to 

contributions of large distances in the “t-channel”. An inspection of (3.16) shows that in 
this limit the leading-twist contributions of dimension 5 are smaller than those of higher- 
twist, which may be considered as an indication that 3pt sum rules become more reliable 
than LC sum rules at very large t. 

5 Numerical Analysis 

We now turn to the numerical evaluation of the LC sum rules (2.24)-(2.26). Let us first 
define the relevant observables. 

5.1 Kinematics 

With the standard decomposition for the B + p transition matrix element (1.1) the 
spectrum with respect to the electron energy E reads: 

dI’(i?O + p+e-ii) 

dE = 

G;Ivub12 tmaz 

= 1287r3mL I 
dt t{(l - cos O)2H2 + (1 + cos 6)“~: + 2(1 - cos2 6)~;)) 

0 

(5.1) 
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with the helicity amplitudes 

x1/2 

H* = crnB + m&L(t) T mB + m V(t), 
P 

(5.2) 

1 Ho = ~ 
2m,vQ 

(mi - rnz - t)(m~ + m,@,(t) - mB : m (5.3) 
P 

where the indices denote the polarization of the p. X is defined as 

X = (rni + rnz - t)” - 4rnirnz. (54 

t max, the maximum value of t at fixed electron energy, is given by 

t - = 213 mB - mBy’2E (5.5) 

t9 is the angle between the p and the charged lepton in the (e-v) CM system and given by 

cos 8 = L (rni - mz + t - 4mBE). 
A’/2 (5.6) 

The spectrum with respect to t reads: 

dI’( i?’ -3 p+e-F) G;lkl” 

dt = 1927r3mi 
X”2 t (H,2 + H: + H?) . (5.7) 

We also introduce the notations l?~ and FL for the partial decay rates where the final state 
p is transversely or longitudinally polarized. 

From the specific structure of the helicity amplitudes it follows that at small t the 
produced p mesons are predominantly longitudinally polarized; for t = 0 only longitudinally 
polarized p are produced. At large t, on the other hand, the contribution of A2 and V to 
the decay rate is suppressed, since X has a zero at t,,,. 

5.2 Input Parameters 

The decay constant f, is measured experimentally [35]: 

f, = (205 f 10) MeV, P-8) 

while existing information on f,’ comes from QCD sum rules. In the following we use [18] 

f,‘( 1 GeV) = (160 f 10) MeV. (5.9) 

The p meson leading twist distribution amplitudes 411 and $I have been recently reexam- 
ined in [18]. We use 

411,&p) = 64 - u) [l + &(/L)C;‘~(~U - l)] (5.10) 
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with a!(1 GeV) = 0.18*0.10 [24, 181 and a.$(1 GeV) = 0.2fO.l [18], as already mentioned 
in Sec. 3.2. 

The value of the b quark (pole) mass mb is somewhat controversial, with estimates 

varying from 4.6 to 5.1 GeV. This large range, however, probably overestimates the actual 

uncertainty and rather reflects that the pole mass has to be nonperturbatively defined and 
that suitable definitions (and values) depend on the application. In this paper we use 

mb = (4.8 f 0.1) GeV, (5.11) 

which, we believe, is a fair estimate. 
The decay constant fB was calculated in QCD sum rules and on the lattice, with a 

world average of about 180 MeV (see, e.g. [36]). It was found, however, that within the 
QCD sum rule approach fB receives large radiative corrections, which increase its value by 
30 to 60 MeV [32]. S ince similar radiative corrections have not been calculated for the sum 
rules for form factors, we think that it more consistent to use the lower value of fB as it 
is obtained from the sum rules without radiative corrections, see also [17]. In practice, we 
simply substitute fi by the corresponding sum rule with the same values of all parameters; 
this has an additional advantage of reducing considerably the b quark mass dependence. 
In fact, there are arguments suggesting that radiative corrections tend to cancel between 
fB and the form factors. This cancellation was indeed observed for B + D* transitions 
[37] and for the B meson matrix element of the kinetic energy operator [38]. An explicit 
calculation of the radiative corrections to LC sum rules would, however, be very welcome. 

For the values of the condensates we use 

(qq)(l GeV) = -(245 i 10) MeV3, 

= (0.012 f 0.006) GeV4, 

(qgaGq)(l GeV) = 0.65GeV2. (qq)(l GeV), 

(cr,ijq)2 = 0.56. (-0.245) GeV’. (5.12) 

They enter the 3pt sum rules explicitly, and the LC sum rules implicitly, via estimates of 
the parameters of the distribution amplitudes [18] and of fB. 

We assume values of the continuum thresholds for p and B mesons sg = 1.5 GeV and 

SOB = 35 34,33 GeV2 for mb = 4.7,4.8,4.9 GeV, respectively. The working region of Bore1 
parametkrs in 3pt sum rules is taken to be M2 z (l-2) GeV2 for p 

10) GeV2 for B mesons, with a fixed ratio ‘Mg/Mz = 

mesons and Mg z (5- 

5. Since for fixed momentum 
fraction u the expansion in LC sum rules goes in powers of l/(uMi), we make the formal 
replacement [17] Mi -, M;/(u), where (u) z 0.6 - 0.8 is the average momentum fraction 

calculated by inserting an additional factor u under the integral (separately for each form 
factor and each value of t), and then taking the interval Mi z (4-8) GeV2, the same as in 
the 2pt sum rule for f B. The scale of condensates and distribution amplitudes in the sum 
rules for the form factors is ,u2 = rni - mi. 
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5.3 Results and Error-Estimates 

Our final results for form factors and spectra are collected in Figs. 6-8. First, we display 
in Fig. 6 the form factors as functions of the Bore1 parameter at t = 0. The solid lines are 

obtained with mb = 4.8GeV (s: = 34GeV2), the dashed lines with mb = 4.7GeV (st = 
3jGev’) and mb = 4.9 GeV (so” = 33 GeV2), respectively. The curves are remarkably flat 

which indicates a good accuracy of the sum rules. The variation of a y” within the specified 
f50% range has an effect of about the same size as the dependence on mb. The dependence 

on the continuum threshold st is small, provided the same value is used consistently in 
the sum rule for f B. In addition to uncertainties in the sum rule parameters, the accuracy 

of our results is essentially limited by the neglected higher twist corrections and radiative 
corrections. We have estimated the higher-twist effects for Al in Sec. 3.2 and found them to 
be approximately -15%. This estimate is, however, preliminary and we have not included 
the higher-twist correction in our final results in this section. As for radiative corrections, 
we expect them to cancel to some extent when fB is expressed as 2pt sum rule to O(CY~) 
accuracy. Both sources of uncertainty can be systematically reduced by calculating the 

corresponding corrections, which is possible, but beyond the scope of this paper. Taking 
everything together, we think that adding an additional f15% uncertainty to the above 
results yields a fair estimate of the true theoretical error. 

We thus obtain the following values for the form factors at maximum recoil: 

A;-(O) = 0.27 f 0.01 f 0.02 i 0.02 f 0.04, 

A;-'(O) = 0.28 f 0.01 f 0.02 & 0.02 & 0.04, 

VB'P(0) = 0.35 It 0.01 i 0.03 f 0.03 * 0.05) (5.13) 

where the first error comes from the variation in the Bore1 parameter the second from the 
111 uncertainty fO.l GeV in mb, the third from the uncertainty kO.1 in u2’ and the forth from 

the estimated uncertainty due to not included higher twist and radiative corrections. Note 
that the first three errors are correlated between the form factors. The results for A,(O) 

and V(0) are comparable with those obtained in [17]. In Table 1 we compare our results 
to quark models, adding the errors in quadrature. We have not included the 3pt sum rule 
results [4, 51, since they suffer from the deficiencies discussed in Sec. 3. A comparison with 
lattice results is difficult, as most of them are obtained at large t > 14GeV2 and then 
extrapolated down to t = 0 using different assumptions on the functional dependence on t 

and the b quark mass. Only for Al the assumed monopole dependence Al - l/(mi. - t) 

is compatible with the scaling law A,(O) - mL3'2. Using that dependence, different lattice 

collaborations have obtained 

0.22 rt 0.05 ELC [7], 

A,(O) = 0.24 f 0.12 APE [8], 
0.27’;:;,7 

(5.14) 
UKQCD [14]. 

These numbers are quite close to our result. 

23 



0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
3 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
3 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
3 

(a> 
rnb varied within errorbars ___________ 

L 4 

1 I,,, I IIII I IIII I II11 I III1 I III1 I IIII I”L~ 

.5 4 4.5 5 5.5 6 6.5 7 7.5 
M~[GeV*] 

.5 4 4.5 5 5.5 6 6.5 7 7.5 
Mi[GeV’] 

.5 4 4.5 5 5.5 6 6.5 7 7.5 
Mi[GeV*] 

Figure 6: Semileptonic B decay form factors at t = as function of the Bore1 parameter for 
central values of the LC sum rule parameters (solid lines). 
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Figure 7: Semileptonic B decay form factors as function of t for central values of the LC 
sum rule parameters (solid lines). The dashed lines give error estimates. 
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Reference ,:,-+if Af’P Af’P vB+p 

This work - 0.27 f 0.05 0.28 f 0.05 0.35 i 0.07 
BKR [6] 0.30 - - - 

FGM 1391 0.20 zt 0.02 0.26 f 0.03 0.31 f 0.03 0.29 * 0.03 

Jaus [40] 0.27 0.26 0.24 0.35 

Melikhov [41] 0.29 0.17-0.18 0.155 0.215 

WSB [ll] 0.33 0.28 0.28 0.33 

Table 1: The form factors of the b -+ u transitions at t = 0 in LC sum rules and quark 
models. 

Reference r(B” --+ 7r+e-C) r(B” -+ p+e-6) WlJw L/b 
This work - 13.5 & 4.0 1.7f 0.5 0.52 f 0.08 
BKR [6] 7.8 - - - 

FGM [39] 3.0 4.1 0.6 5.4 f 1.2 - 0.5 f 0.3 

ISGW2 [13] 9.6 14.2 1.48 0.3 

Jaus [40] 10.0 19.1 1.91 0.82 

Melikhov [41] 7.2 9.64 1.34 1.13 

WSB [ll] 7.4 26 3.5 1.34 

Table 2: Decay rates of the b + u transitions in units ]Vub]2ps-1. rL denotes the portion 
of the rate with a longitudinal polarized p and rT with a transversely polarized p. 

Next, we display in Fig. 7 the behaviour of the form factors in t (solid lines) together 
with error estimates (dashed lines) obtained by taking extreme values of the parameters: 
the upper dashed lines refer to mb = 4.7GeV, 1Mi = 4 GeV2, the lower dashed lines to 
mb = 4.9 GeV, Mi = 7 GeV2. We also show lattice results from the UKQCD collaboration 
(diamonds), which are in very good agreement with our results. The plots indicate clearly 
that the accuracy of our results at large t is worse than at small t, in particular for A2 and 
V. However, the contribution of A2 and V to the experimentally measurable observables, 
the spectrum in t e.g., is kinematically suppressed at large t, so that large uncertainties in 
that region are not relevant phenomenologically ( see also the discussion below). Figure 7 
also shows that Al is a slowly varying function of t, whereas A2 and V increase more 
steeply; none of the form factors can be fitted by a monopole in t as suggested by the 
pole-dominance hypothesis. In Ref. 1341 t i was found that the ratio of form factors takes a 
simple form in the heavy quark limit supplemented by some model-assumptions. We find 
that in the full range of physical t our ratio V(t)/A,(t) a g rees with the prediction of [34] 
within 4%, whereas A&t)/Al(t) is by 10% to 20% smaller than predicted. 

Finally, in Fig. 8, we show the spectra dI’/dt and dI’/dE,. Fig 8(a) shows the effect 
mentioned before: although the uncertainty in the form factors increases with t, the con- 
tribution of A2 and V is suppressed and the resulting uncertainty is dominated by the 
(smaller) error on Al. 

which yields a Tip 

The uncertainty is maximal at t z 15 GeV2 and amounts to ‘:$, 

accuracy of IV&l if determined from that point. Taking into account 
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Figure 8: B + pev decay spectra. (a): spectrum in t, (b): spectrum in the electron energy 
E,. Solid and dashed lines as in Fig. 7. 

the additional uncertainties of unknown higher twist and radiative corrections, we estimate 
that with present knowledge 1 V 1 &, may be determined from dI’/dt with a theoretical accu- 

racy of 20%. It is conceivable that further calculations may push down this uncertainty to 
f15% on the spectrum, i.e. about 8% on I&,], es ecially if mb was fixed to better accuracy. p 

Fig. 8(b) also shows that a determination of I VU,] f rom the electron energy spectrum may 

be more difficult, since it is strongly peaked and the position of the maximum thus may 
be invisible with presently available experimental resolution. 

In Ref. [2] the CLEO co a oration has presented first results on the branching ratios of 11 b 

B + rev and B + pev. Since the given values are to a certain extent model-dependent, 
we refrain from extracting any number for ] VUb ] f rom them. This task, we believe, is more 

appropriate for our experimental colleagues. 
Integrating up the spectra, we find 

I?@’ + p+e-C) = ]V,]2(13.5 f 1.0 * 1.3 f 0.6 f 3.6)~~si (5.15) 

with the same sequence of errors as for the form factors. In Table 2 we also give ratios of 

partial decay rates which are independent of ]V& 1 and may serve as tests of our predictions. 
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TO get the ratio I’(p)/r( ) 7r we have used the result of [6] obtained by a similar method. 

6 Summary and Conclusions 

We have given a detailed analysis of existing controversies in QCD sum rule calculations 
of semileptonic B -+ pev form factors, which, as we believe, settles this problem. Both the 
decease of 3pt sum rules, which we have exposed, and the remedies which we have suggested, 
apply to all heavy-to-light transitons and are equally relevant e.g. for rare radiative decays, 
where a similar discrepancy between LC and 3pt sum rules was found [17]. 

We have used the recent reanalysis of p meson distribution amplitudes [18] to improve 
and update LC sum rules for the semileptonic form factors, including first estimates of 
higher-twist corrections. Our final results for the form factors, decay rates and the spectra 
are presented in Tables 1,2 and in Figs. 7,8 together with lattice data and the results of 
quark models. We have given a detailed analysis of uncertainties of our approach, with the 
conclusion that its present accuracy is sufficient for a model-independent determination of 
]&,I with an error less than 20%. 

The accuracy of our results can be improved, by calculating radiative corrections to the 
sum rules and higher-twist corrections. Both is possible using existing methods and could 
ultimately decrease the uncertainty by a factor two, of order - 10% in ]I/ub]. Yet higher 
accuracy is, however, not feasible within the sum rule method. 

Acknowledgements: P.B. is grateful to the theory group of NORDITA in Copenhagen 
for its hospitality while this work was finalized. 

Note added: When this paper was in writing, the work [43] appeared with a LC sum rule 
for Af’K*. In the SU(3) limit th eir formula agrees with ours (except for the S-function 
terms related to continuum subtraction). 

Appendices 

A Continuum Subtraction in LC Sum Rules 

The “standard” procedure, to which we conform in this paper, consists in approximating 
the (unknown) physical spectral function by the perturbative one above some threshold 
so, so that 

J 
M & PhYW - 

50 s - p2 J 

M & PPYS) 

30 s-p2’ 

Thus it is necessary to know the perturbative spectral function explicitly. 
In evaluating the correlation function (2.12) one encounters terms of type (4 = pB - p,,, 

f(u) arbitrary function): 

I, = 
J 

o1 d7-L f(u) 
b-4 - (9: UP,)T 

(A4 
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The dispersive representation of Ii is trivial and reads 

J 
M ds 

1 1 
I1 = - 

-‘b s - (PP + 4J2 J cl 
du f(u) S(us - ml - utirnz + tii). 

Putting the upper limit of integration in s to SOB simply introduces a factor O[c(u, s,“)] 
in the integration over u. The function c is defined after Eq. (2.26). For higher powers 
one has either to integrate over u by parts, or calculate the spectral function by applying 
consequently two Bore1 transformations pi -+ M2 and l/M2 --) s, see [42, 381 for details. 

In particular, for 12 we find 

k%(s) = - 
4 

@if - t + uffmi)2 
( 

2mf&f( u*) 

f’(‘lL*) - m; _ t + u2m2 ’ 
* P ) 

(A4 

where u* is the solution of c(u,, s) = 0 inside the interval 0 < u, < 1. With this spectral 
density, performing the continuum subtraction and the Bore1 transformation in pi, one 
obtains after a suitable change of variables 

* 1 
12 - continuum = - 

J 
’ du f(U) exp 

M2 uo u2 
tit + uum2) 

P 
I 

f(u) 
mb2 -t-/-urn; 

=P 
1 
-&(m: -fit +ufim~) 

II 
’ , (A4 
WI 

where u. is the solution of c(uo, SOB) = 0 with 0 5 us < 1. Since in our case f(u) vanishes 
at u = 1, one arrives at the typical structure O/(uM2) + 6 that enters (2.25) and (2.26). 

B 3pt Sum Rules with Tensor-Current 

In this appendix we give the Wilson-coefficients entering the OPE of Cpya, Eq. (3.21). We 
use the invariant decomposition 

c P’~ = cdgwp; - g”“(t) + c+(pB + pp)“(&$ - &p;) 

+ i&J (‘“,pP;$P; - tp”apP;$P;) + . . . ] (B.1) 
where {Co, C+, Cv} determines the form factors {Al, AZ, V}. Taking into account pertur- 
bation theory, the quark and the mixed condensate, as well as the four quark condensate 
(in vacuum saturation approximation), the OPE reads: 

c = -pert $- c ‘3’(qq) + C(‘)(qgaGq) + C@) (-;) cr,~(qq)~ + . . . 

We give explicit formulas for the Borelized expressions &(315s) and the double spectral 
function of Cpert, such that 

c Pert - - dsbds, 
J 

ppert(Sb, %A, t) 

(sb _ p;)(s, _ p;) + subtractions. 
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&ert = 3b 

8r2X112 + 8n23X3/2 (bT - 2wu)(7’ - 2b), 

pert 
P+ = 4T2),,2 cbT - 2sbsu> - 4T2;5,2 { b(b + 2s,)T2 - 3s,(b2 + 2bsb + SbS,)T 

+ 2W,(b2 + 2bs, + 3sbs,)}, 

$y” = 
2T23X312 (bT - 2sbsu) - 2T2;5,2 {b2T2 - 6bsbsuT + 2W,(b2 + 3sbs,)}, (B.3) 

with x = .st + st + t - 2sbs, - 2sbt - 2s,t, b = sb - rni and T = sb $ s, - t. For the 
nonperturbative terms we obtain: 

93) = _ mb 
0 

MiM,2 

,--‘,lM; 
, 

-g(3) = 0 
+ > 

kt”’ Ix 0 > 

&b”’ mb - t = ,-mZ,/M; rni mb2 --- 1 2 

M;M; 6M;Mp” + 4M; + 6Mp” 3M,2 ’ 

f$‘= _ mb 
6M;Mp” 

pglM:, > 

$I= _ mb ,-m’blM:, 
3M;M; ’ 

96) = ’ 
1 1 4 4 (rni - t)” 

0 
~ ,-m’b/M:, - - - - ~- ~- 
M; M; 3M,2 3Mp” 18Mi 36M; 

+ 2b-G - t> 
18M;M; 9M; 

- rni(rni -t) + 

18M;Mp” 

36) = l 
1 4 rni - t 

+ M;M; + 3M;Mp’ + 36M;M; - 18M;M; 

@‘= Le 
M;M; 
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